Tuesday 15 August 2017

Moving Average Filter Implementation C


Nas estatísticas, uma média móvel simples é um algoritmo que calcula a média não ponderada das últimas n amostras. O parâmetro n é muitas vezes chamado de tamanho de janela, porque o algoritmo pode ser pensado como uma janela que desliza sobre os pontos de dados. Usando uma formulação recursiva do algoritmo, o número de operações necessárias por amostra é reduzido a uma adição, uma subtração e uma divisão. Uma vez que a formulação é independente do tamanho da janela n. A complexidade de tempo de execução é O (1). I. e. constante. A fórmula recursiva da média móvel não ponderada é, onde avg é a média móvel e x representa um ponto de dados. Assim, sempre que a janela desliza para a direita, um ponto de dados, a cauda, ​​cai para fora e um ponto de dados, a cabeça, se move para dentro. Implementação Uma implementação da média móvel simples tem que levar em conta a inicialização do algoritmo. A janela não é totalmente preenchida com valores, a fórmula recursiva falha. Armazenamento O acesso ao elemento da cauda é necessário, o que, dependendo da implementação, requer um armazenamento de n elementos. Minha implementação usa a fórmula apresentada quando a janela é totalmente preenchida com valores e, de outra forma, muda para a fórmula, que atualiza a média recalculando a soma dos elementos anteriores. Observe que isso pode levar a instabilidades numéricas devido à aritmética de ponto flutuante. No que diz respeito ao consumo de memória, a implementação usa iteradores para acompanhar os elementos da cabeça e da cauda. Isso leva a uma implementação com requisitos de memória constante independentes do tamanho da janela. Aqui está o procedimento de atualização que desliza a janela para a direita. Na maioria das coleções invalidar seus enumeradores quando a coleção subjacente é modificada. A implementação, no entanto, depende de enumeradores válidos. Especialmente em aplicativos baseados em fluxo contínuo, as necessidades de coleta subjacentes são modificadas quando um novo elemento chega. Uma maneira de lidar com isso é criar uma coleção de tamanho fixo circular simples de tamanho n1 que nunca invalida seus iteradores e, alternativamente, adicionar um elemento e chamar Shift. Eu gostaria de descobrir como realmente implementar isso, como a função de teste é muito confuso para me8230 Eu preciso converter dados para matriz, em seguida, executar SMA sma novo SMA (20, matriz) para um período de 20 SMA Como faço para lidar Shift () É necessário implementar construtores. (Desculpe pela confusão). Não você precisa don8217t converter seus dados em uma matriz, desde que seus dados implementa IEnumerable1 eo tipo enumerado é duplo. No que diz respeito à sua mensagem privada está em causa você precisa converter o DataRow para algo que é enumerable de valores duplos. Sua abordagem funciona. Shift, desliza a janela uma posição para a esquerda. Para um conjunto de dados de dizer 40 valores e um período de 20 SMA você tem 21 posições a janela se encaixa em (40 8211 20 1). Cada vez que você chamar Shift () a janela é movida para a esquerda por uma posição e Média () retorna o SMA para a posição atual da janela. Ou seja, a média não ponderada de todos os valores dentro da janela. Além disso, minha implementação permite calcular o SMA mesmo se a janela não estiver totalmente preenchida no início. Então, em essência Espero que isso ajude. Quaisquer outras questões DIREITOS DE AUTOR NOTIFICAÇÃO Christoph Heindl e cheind. wordpress, 2009-2012. O uso não autorizado e / ou a duplicação deste material sem permissão expressa e por escrito deste autor e / ou autor de blogs é estritamente proibido. Excertos e links podem ser usados, desde que o crédito completo e claro seja dado a Christoph Heindl e cheind. wordpress com direção apropriada e específica para o conteúdo original. Mensagens recentes A média móvel como um filtro A média móvel é frequentemente utilizada para suavização de dados na presença de ruído. A média móvel simples nem sempre é reconhecida como o filtro de Resposta de Impulso Finito (FIR) que é, enquanto é realmente um dos filtros mais comuns no processamento de sinal. Tratá-lo como um filtro permite compará-lo com, por exemplo, windowed-sinc filtros (ver os artigos sobre low-pass, high-pass, band-pass e band-reject filtros para exemplos desses). A principal diferença com esses filtros é que a média móvel é adequada para sinais para os quais a informação útil está contida no domínio do tempo. Das quais as medidas de alisamento por média são um excelente exemplo. Filtros windowed-sinc, por outro lado, são fortes performers no domínio da freqüência. Com equalização no processamento de áudio como um exemplo típico. Há uma comparação mais detalhada de ambos os tipos de filtros no domínio do tempo versus desempenho de domínio de freqüência de filtros. Se você tiver dados para os quais o tempo e o domínio de freqüência são importantes, então você pode querer dar uma olhada em Variações na Média Móvel. Que apresenta um número de versões ponderadas da média móvel que são melhores nisso. A média móvel de comprimento (N) pode ser definida como escrita como é tipicamente implementada, com a amostra de saída corrente como a média das amostras (N) anteriores. Visto como um filtro, a média móvel executa uma convolução da seqüência de entrada (xn) com um pulso retangular de comprimento (N) e altura (1N) (para fazer a área do pulso e, portanto, o ganho do filtro , 1 ). Na prática, é melhor tomar (N) ímpar. Embora uma média móvel possa também ser calculada usando um número par de amostras, usar um valor ímpar para (N) tem a vantagem de que o atraso do filtro será um número inteiro de amostras, uma vez que o atraso de um filtro com (N) Amostras é exactamente ((N-1) 2). A média móvel pode então ser alinhada exatamente com os dados originais deslocando-o por um número inteiro de amostras. Domínio Dado que a média móvel é uma convolução com um pulso retangular, a sua resposta de frequência é uma função sinc. Isso torna algo como o dual do filtro windowed-sinc, uma vez que é uma convolução com um pulso sinc que resulta em uma resposta de freqüência retangular. É esta resposta de freqüência de sinc que faz com que a média móvel seja um desempenho fraco no domínio da freqüência. No entanto, ele funciona muito bem no domínio do tempo. Portanto, é perfeito para suavizar os dados para remover o ruído, enquanto ao mesmo tempo ainda mantém uma rápida resposta passo (Figura 1). Para o típico Ruído Gaussiano Branco Aditivo (AWGN) que é freqüentemente assumido, a média (N) de amostras tem o efeito de aumentar a SNR por um fator de (sqrt N). Como o ruído para as amostras individuais não está correlacionado, não há razão para tratar cada amostra de forma diferente. Assim, a média móvel, que dá a cada amostra o mesmo peso, vai se livrar da quantidade máxima de ruído para uma dada nitidez resposta passo. Implementação Porque é um filtro FIR, a média móvel pode ser implementada através de convolução. Ele terá então a mesma eficiência (ou falta dela) como qualquer outro filtro FIR. No entanto, também pode ser implementado recursivamente, de uma forma muito eficiente. Segue-se diretamente a partir da definição de que esta fórmula é o resultado das expressões para (yn) e (yn1), ou seja, onde observamos que a mudança entre (yn1) e (yn) é que um termo extra (xn1N) aparece em O final, enquanto o termo (xn-N1N) é removido desde o início. Nas aplicações práticas, muitas vezes é possível deixar de fora a divisão por (N) para cada termo, compensando o ganho resultante de (N) em outro lugar. Esta implementação recursiva será muito mais rápida que a convolução. Cada novo valor de (y) pode ser calculado com apenas duas adições, em vez das (N) adições que seriam necessárias para uma implementação direta da definição. Uma coisa a olhar para fora com uma implementação recursiva é que os erros de arredondamento irá acumular. Isso pode ou não pode ser um problema para o aplicativo, mas também implica que essa implementação recursiva realmente funcionará melhor com uma implementação inteira do que com números de ponto flutuante. Isso é bastante incomum, uma vez que uma implementação de ponto flutuante é geralmente mais simples. A conclusão de tudo isso deve ser que você nunca deve subestimar a utilidade do simples filtro de média móvel em aplicações de processamento de sinal. Filter Design Tool Este artigo é complementado com uma ferramenta Filter Design. Experimente com diferentes valores para (N) e visualize os filtros resultantes. Experimente agora Como outros já mencionaram, você deve considerar um filtro IIR (resposta de impulso infinito) em vez do filtro FIR (resposta de impulso finito) que você está usando agora. Há mais, mas à primeira vista os filtros FIR são implementados como convoluções explícitas e filtros IIR com equações. O filtro IIR especial que eu uso muito em microcontroladores é um filtro de passa-baixa de um único pólo. Este é o equivalente digital de um simples filtro analógico R-C. Para a maioria das aplicações, elas terão melhores características do que o filtro de caixa que você está usando. A maioria dos usos de um filtro de caixa que eu encontrei são o resultado de alguém não prestar atenção na classe de processamento de sinal digital, não como resultado de precisar de suas características particulares. Se você só quer atenuar as altas freqüências que você sabe que são ruídos, um único pólo filtro passa-baixo é melhor. A melhor maneira de implementar um digitalmente em um microcontrolador é geralmente: FILT lt - FILT FF (NEW - FILT) FILT é um pedaço de estado persistente. Esta é a única variável persistente que você precisa para calcular este filtro. NEW é o novo valor que o filtro está sendo atualizado com esta iteração. FF é a fracção do filtro. Que ajusta o peso do filtro. Olhe para este algoritmo e veja que para FF 0 o filtro é infinitamente pesado desde a saída nunca muda. Para FF 1, seu realmente nenhum filtro em tudo desde que a saída segue apenas a entrada. Valores úteis estão no meio. Em sistemas pequenos você escolhe FF para ser 12 N de modo que a multiplicação por FF pode ser realizada como uma mudança para a direita por N bits. Por exemplo, FF pode ser 116 e a multiplicação por FF, portanto, um deslocamento para a direita de 4 bits. Caso contrário, este filtro precisa apenas de uma subtração e uma adição, embora os números geralmente precisam ser mais largos do que o valor de entrada (mais na precisão numérica em uma seção separada abaixo). Eu costumo tomar leituras AD significativamente mais rápido do que eles são necessários e aplicar dois desses filtros em cascata. Este é o equivalente digital de dois filtros R-C em série, e atenua por 12 dBoctave acima da freqüência rolloff. No entanto, para as leituras AD seu geralmente mais relevante para olhar para o filtro no domínio do tempo, considerando a sua resposta passo. Isso indica a rapidez com que seu sistema verá uma alteração quando a coisa que você está medindo muda. Para facilitar a concepção destes filtros (que significa apenas escolher FF e decidir quantos deles para cascatear), eu uso o meu programa FILTBITS. Você especifica o número de bits de deslocamento para cada FF na série de filtros em cascata e calcula a resposta da etapa e outros valores. Na verdade, eu costumo executar este através do meu script wrapper PLOTFILT. Isso executa FILTBITS, que faz um arquivo CSV, em seguida, traça o arquivo CSV. Por exemplo, aqui está o resultado de PLOTFILT 4 4: Os dois parâmetros para PLOTFILT significam que haverá dois filtros em cascata do tipo descrito acima. Os valores de 4 indicam o número de bits de mudança para realizar a multiplicação por FF. Os dois valores FF são, portanto, 116 neste caso. O traço vermelho é a resposta da etapa da unidade, e é a coisa principal a olhar. Por exemplo, isto diz-lhe que se a entrada muda instantaneamente, a saída do filtro combinado estabelecerá a 90 do novo valor em 60 iterações. Se você se preocupa com 95 tempo de resolução, então você tem que esperar cerca de 73 iterações, e por 50 tempo de resolução apenas 26 iterações. O traço verde mostra a saída de um único pico de amplitude total. Isto dá-lhe alguma idéia da supressão aleatória do ruído. Parece que nenhuma amostra individual causará mais de uma alteração de 2,5 na saída. O traço azul é dar uma sensação subjetiva do que este filtro faz com o ruído branco. Este não é um teste rigoroso, uma vez que não há garantia o que exatamente o conteúdo foi dos números aleatórios escolhidos como a entrada de ruído branco para esta execução de PLOTFILT. Seu somente para dar-lhe uma sensação áspera de quanto será squashed e de como liso é. PLOTFILT, talvez FILTBITS, e muitas outras coisas úteis, especialmente para o desenvolvimento de firmware PIC está disponível na versão de software do PIC Development Tools na minha página de downloads de Software. Adicionado sobre a precisão numérica eu vejo dos comentários e agora uma nova resposta que há interesse em discutir o número de bits necessários para implementar este filtro. Observe que a multiplicação por FF criará Log 2 (FF) novos bits abaixo do ponto binário. Em sistemas pequenos, FF é geralmente escolhido para ser 12 N de modo que este multiplicar é realmente realizado por um deslocamento à direita de N bits. FILT é geralmente um inteiro de ponto fixo. Observe que isso não altera nenhuma das matemáticas do ponto de vista de processadores. Por exemplo, se você estiver filtrando leituras de AD de 10 bits e N 4 (FF 116), então você precisará de 4 bits de fração abaixo das leituras de AD de 10 bits. Um processadores mais, youd estar fazendo operações inteiras de 16 bits devido às leituras de AD de 10 bits. Neste caso, você ainda pode fazer exatamente as mesmas operações de integer de 16 bits, mas comece com as leituras AD desviadas por 4 bits. O processador não sabe a diferença e não precisa. Fazer a matemática em inteiros inteiros de 16 bits funciona se você considera que eles são 12,4 ponto fixo ou verdadeiros inteiros de 16 bits (16,0 ponto fixo). Em geral, você precisa adicionar N bits cada pólo de filtro se você não quiser adicionar ruído devido à representação numérica. No exemplo acima, o segundo filtro de dois teria 1044 18 bits para não perder informações. Na prática em uma máquina de 8 bits que significa youd usar valores de 24 bits. Tecnicamente apenas o segundo pólo de dois precisaria do valor mais amplo, mas para a simplicidade do firmware eu costumo usar a mesma representação e, portanto, o mesmo código, para todos os pólos de um filtro. Normalmente eu escrevo uma sub-rotina ou macro para executar uma operação de pólo de filtro, em seguida, aplicar isso a cada pólo. Se uma sub-rotina ou macro depende se os ciclos ou a memória do programa são mais importantes nesse projeto específico. De qualquer maneira, eu uso algum estado zero para passar NOVO para o subrotina, que atualiza FILT, mas também carrega isso para o mesmo estado de arranhão NOVO foi dentro Isso torna mais fácil para aplicar vários pólos desde o FILT atualizado de um pólo é o NOVO Da próxima. Quando uma sub-rotina, é útil ter um ponteiro apontar para FILT no caminho, que é atualizado para logo após FILT na saída. Desta forma, a sub-rotina opera automaticamente em filtros consecutivos na memória se for chamada várias vezes. Com uma macro você não precisa de um ponteiro desde que você passa no endereço para operar em cada iteração. Exemplos de código Aqui está um exemplo de uma macro como descrito acima para um PIC 18: E aqui está uma macro semelhante para um PIC 24 ou dsPIC 30 ou 33: Ambos estes exemplos são implementados como macros usando o meu pré-processador de assembler PIC. Que é mais capaz do que qualquer um das instalações macro incorporadas. Clabacchio: Outra questão que eu deveria ter mencionado é a implementação de firmware. Você pode escrever uma sub-rotina de filtro passa-baixo de um único pólo uma vez, depois aplicá-lo várias vezes. Na verdade eu costumo escrever uma sub-rotina para levar um ponteiro na memória para o estado do filtro, em seguida, fazê-lo avançar o ponteiro para que ele pode ser chamado em sucessão facilmente para realizar filtros multi-polo. Ndash Olin Lathrop Apr 20 12 at 15:03 1. muito obrigado por suas respostas - todos eles. Eu decidi usar este filtro IIR, mas este filtro não é usado como um filtro LowPass padrão, uma vez que eu preciso para a média de valores de contador e compará-los para detectar alterações em um determinado intervalo. Uma vez que estes Valores van ser de dimensões muito diferentes, dependendo de hardware que eu queria tomar uma média, a fim de ser capaz de reagir a estas mudanças Hardware específicas automaticamente. Ndash sensslen May 21 12 at 12:06 Se você pode viver com a restrição de um poder de dois números de itens para a média (ou seja, 2,4,8,16,32 etc), então a divisão pode ser feita de forma fácil e eficiente em um Micro de baixo desempenho sem divisão dedicada, pois pode ser feito como um deslocamento bit. Cada turno é um poder de duas, por exemplo: O OP pensou que tinha dois problemas, dividindo em um PIC16 e memória para seu buffer de anel. Esta resposta mostra que a divisão não é difícil. É verdade que ele não trata do problema de memória, mas o sistema SE permite respostas parciais, e os usuários podem tirar algo de cada resposta por si mesmos, ou mesmo editar e combinar outras respostas. Uma vez que algumas das outras respostas requerem uma operação de divisão, elas são igualmente incompletas, uma vez que não mostram como efetivamente conseguir isso em um PIC16. Há uma resposta para um verdadeiro filtro de média móvel (aka boxcar filtro) com menos requisitos de memória, se você não mente downsampling. É chamado de filtro integrador-pente em cascata (CIC). A idéia é que você tem um integrador que você toma as diferenças de um período de tempo, eo dispositivo de economia de memória chave é que por downsampling, você não tem que armazenar cada valor do integrador. Ele pode ser implementado usando o seguinte pseudocódigo: Seu comprimento médio móvel efetivo é decimationFactorstatesize, mas você só precisa manter em torno de amostras statesize. Obviamente, você pode obter um melhor desempenho se o seu statesize e decimationFactor são poderes de 2, de modo que a divisão e os operadores restantes são substituídos por turnos e máscara-ands. Postscript: Eu concordo com Olin que você deve sempre considerar filtros IIR simples antes de um filtro de média móvel. Se você não precisa de freqüência-nulos de um filtro de vagão, um filtro de passa-baixa de 1 pólo ou de 2 pólos provavelmente funcionará bem. Por outro lado, se você estiver filtrando para fins de decimação (tomando uma entrada de alta taxa de amostragem e calculando a média para uso em um processo de baixa taxa), então um filtro CIC pode ser exatamente o que você está procurando. (Especialmente se você pode usar statesize1 e evitar o ringbuffer completamente com apenas um valor único integrador anterior) Theres alguma análise em profundidade da matemática por trás usando o filtro IIR de primeira ordem que Olin Lathrop já descreveu mais sobre a troca de pilha de processamento de sinal digital (Inclui muitas imagens bonitas.) A equação para este filtro IIR é: Isso pode ser implementado usando apenas inteiros e nenhuma divisão usando o código a seguir (pode precisar de alguma depuração como eu estava digitando da memória.) Este filtro aproxima uma média móvel de Os últimos K amostras, definindo o valor de alfa para 1K. Faça isso no código anterior, definindo BITS para LOG2 (K), ou seja, para K 16 set BITS para 4, para K 4 set BITS para 2, etc (eu verificar o código listado aqui logo que eu recebo uma alteração e Editar esta resposta, se necessário.) Responder Jun 23 12 at 4:04 Heres um filtro passa-baixo de um único pólo (média móvel, com freqüência de corte CutoffFrequency). Muito simples, muito rápido, funciona muito bem, e quase nenhuma sobrecarga de memória. Nota: Todas as variáveis ​​têm escopo além da função de filtro, exceto o passado em newInput Nota: Este é um filtro de etapa única. Várias etapas podem ser conectadas em cascata para aumentar a nitidez do filtro. Se você usar mais de um estágio, você terá que ajustar DecayFactor (como se relaciona com o Cutoff-Frequency) para compensar. E, obviamente, tudo o que você precisa é dessas duas linhas colocadas em qualquer lugar, eles não precisam de sua própria função. Este filtro tem um tempo de rampa antes que a média móvel represente a do sinal de entrada. Se você precisar ignorar esse tempo de aceleração, basta inicializar MovingAverage para o primeiro valor de newInput em vez de 0 e esperar que o primeiro newInput não seja um outlier. (CutoffFrequencySampleRate) tem um intervalo entre 0 e 0,5. DecayFactor é um valor entre 0 e 1, geralmente perto de 1. Flutuadores de precisão única são bons o suficiente para a maioria das coisas, eu só prefiro dobra. Se você precisa ficar com números inteiros, você pode converter DecayFactor e Amplitude Factor em inteiros fracionários, em que o numerador é armazenado como o inteiro, eo denominador é um número inteiro de 2 (assim você pode bit-shift para a direita como o Denominador em vez de ter que dividir durante o loop de filtro). Por exemplo, se você usar DecayFactor 0,99, e você quiser usar números inteiros, você pode definir DecayFactor 0,99 65536 64881. E então, sempre que você multiplicar por DecayFactor em seu loop de filtro, basta deslocar o resultado 16. Para obter mais informações sobre isso, um excelente livro thats Online, capítulo 19 sobre filtros recursivos: dspguidech19.htm PS Para o paradigma da média móvel, uma abordagem diferente para definir DecayFactor e AmplitudeFactor que pode ser mais relevante para suas necessidades, vamos dizer que você quer o anterior, cerca de 6 itens média juntos, fazê-lo discretamente, youd adicionar 6 itens e dividir por 6, então Você pode definir o AmplitudeFactor para 16 e DecayFactor para (1,0 - AmplitudeFactor). Respondida May 14 12 at 22:55 Todo mundo tem comentado completamente sobre a utilidade de IIR vs FIR, e na divisão de poder-de-dois. Id gostaria de dar alguns detalhes de implementação. O abaixo funciona bem em pequenos microcontroladores sem FPU. Não há multiplicação, e se você mantiver N um poder de dois, toda a divisão é um ciclo de bit-shifting. Tampão de toque FIR básico: mantém um buffer de execução dos últimos N valores e uma Soma em execução de todos os valores no buffer. Cada vez que uma nova amostra entra, subtraia o valor mais antigo no buffer de SUM, substitua-o pela nova amostra, adicione a nova amostra à SUM e a saída SUMN. Tampão de anel IIR modificado: mantenha uma SUM corrente dos últimos N valores. Cada vez que uma nova amostra entra, SUM - SUMN, adicione a nova amostra e a saída SUMN. Se I39m lendo você direito, você está descrevendo um filtro IIR de primeira ordem o valor que você está subtraindo isn39t o valor mais antigo que está caindo, mas é, em vez disso, a média dos valores anteriores. Os filtros IIR de primeira ordem podem certamente ser úteis, mas não tenho certeza do que você quer dizer quando sugere que a saída é a mesma para todos os sinais periódicos. A uma taxa de amostragem de 10KHz, a alimentação de uma onda quadrada de 100Hz em um filtro de caixa de 20 estágios produzirá um sinal que sobe uniformemente para 20 amostras, senta alto para 30, cai uniformemente para 20 amostras e senta baixo para 30. Uma primeira ordem IIR. Ndash supercat Aug 28 13 às 15:31 vai render uma onda que começa bruscamente a subir e gradualmente nivela perto (mas não no) máximo de entrada, então começa bruscamente a cair e nivela gradualmente perto (mas não) do mínimo de entrada. Comportamento muito diferente. Uma questão é que uma média móvel simples pode ou não ser útil. Com um filtro IIR, você pode obter um bom filtro com relativamente poucos calcs. O FIR que você descreve só pode lhe dar um retângulo no tempo - um sinc em freq - e você não pode gerenciar os lobos laterais. Pode valer a pena jogar algumas multiplicações inteiras para torná-la uma simpática e simétrica sintonia FIR se você pode poupar os carrapatos do relógio. Scott Scott Seidman: Não há necessidade de multiplicações se um tiver simplesmente cada estágio do FIR ou a saída da média da entrada para esse estágio e seu valor armazenado anterior e, em seguida, armazenar a entrada (se houver O intervalo numérico, pode-se usar a soma em vez da média). Se isso é melhor do que um filtro de caixa depende da aplicação (a resposta de passo de um filtro de caixa com um atraso total de 1ms, por exemplo, terá um pico d2dt desagradável quando a mudança de entrada, e novamente 1ms mais tarde, mas terá o mínimo Possível ddt para um filtro com um atraso total de 1ms). Como disse mikeselectricstuff, se você realmente precisa reduzir suas necessidades de memória, e você não se importa sua resposta ao impulso é uma exponencial (em vez de um pulso retangular), eu iria para um filtro de média móvel exponencial . Eu uso-os extensivamente. Com esse tipo de filtro, você não precisa de qualquer buffer. Você não tem que armazenar N amostras passadas. Apenas um. Assim, seus requisitos de memória são cortados por um fator de N. Além disso, você não precisa de qualquer divisão para isso. Somente multiplicações. Se você tiver acesso a aritmética de ponto flutuante, use multiplicações de ponto flutuante. Caso contrário, faça multiplicações inteiras e desloque para a direita. No entanto, estamos em 2012, e eu recomendo que você use compiladores (e MCUs) que permitem que você trabalhe com números de ponto flutuante. Além de ser mais memória eficiente e mais rápido (você não tem que atualizar itens em qualquer buffer circular), eu diria que é também mais natural. Porque uma resposta de impulso exponencial corresponde melhor à maneira como a natureza se comporta, na maioria dos casos. Um problema com o filtro IIR como quase tocado por olin e supercat mas aparentemente desconsiderado por outros é que o arredondamento para baixo introduz alguma imprecisão (e potencialmente biastruncation). Assumindo que N é uma potência de dois, e apenas aritmética inteira é utilizada, o direito de deslocamento sistematicamente elimina os LSBs da nova amostra. Isso significa que quanto tempo a série poderia ser, a média nunca vai levá-los em conta. Por exemplo, suponha uma série lentamente decrescente (8,8,8,8,7,7,7,7,6,6) e suponha que a média é realmente 8 no início. A amostra do punho 7 trará a média para 7, independentemente da intensidade do filtro. Apenas para uma amostra. Mesma história para 6, etc. Agora pense no oposto. A série sobe. A média ficará em 7 para sempre, até que a amostra seja grande o suficiente para fazê-la mudar. Claro, você pode corrigir o viés, adicionando 12N2, mas isso não vai realmente resolver o problema de precisão. Nesse caso a série decrescente permanecerá para sempre em 8 até que a amostra seja 8-12 (N2). Para N4, por exemplo, qualquer amostra acima de zero manterá a média inalterada. Acredito que uma solução para isso implicaria manter um acumulador dos LSBs perdidos. Mas eu não fui longe o suficiente para ter código pronto, e não tenho certeza que não iria prejudicar o poder IIR em alguns outros casos de série (por exemplo, se 7,9,7,9 seria média para 8 então). Olin, sua cascata de dois estágios também precisaria de alguma explicação. Você quer dizer segurando dois valores médios com o resultado do primeiro alimentado para o segundo em cada iteração. Qual é o benefício deste eu sei que isso é possível com o impulso como por: Mas eu realmente gostaria de evitar usar impulso. Eu tenho googled e não encontrei qualquer exemplos adequados ou legível. Basicamente, eu quero acompanhar a média móvel de um fluxo contínuo de um fluxo de números de ponto flutuante usando os números de 1000 mais recentes como uma amostra de dados. Qual é a maneira mais fácil de conseguir isso que eu experimentei com o uso de uma matriz circular, média móvel exponencial e uma média móvel mais simples e descobriu que os resultados da matriz circular adequado às minhas necessidades. Se suas necessidades são simples, você pode apenas tentar usar uma média móvel exponencial. Simplificando, você faz uma variável de acumulador, e como seu código olha para cada amostra, o código atualiza o acumulador com o novo valor. Você escolhe um alfa constante que está entre 0 e 1 e calcula isso: Você só precisa encontrar um valor de alfa onde o efeito de uma determinada amostra dura apenas cerca de 1000 amostras. Hmm, Im realmente não tenho certeza que isso é adequado para você, agora que Ive colocá-lo aqui. O problema é que 1000 é uma janela muito longa para uma média móvel exponencial Não tenho certeza se há um alfa que iria espalhar a média nos últimos 1000 números, sem subfluxo no cálculo de ponto flutuante. Mas se você quisesse uma média menor, como 30 números ou assim, esta é uma maneira muito fácil e rápida de fazê-lo. Respondeu 12 de junho 12 em 4:44 1 em seu borne. A média móvel exponencial pode permitir que o alfa seja variável. Portanto, isto permite que ele seja usado para calcular médias de base de tempo (por exemplo, bytes por segundo). Se o tempo desde a última actualização do acumulador for superior a 1 segundo, deixe alfa ser 1.0. Caso contrário, você pode deixar alfa ser (usecs desde a última atualização1000000). Ndash jxh 12 de junho de 12 às 6:21 Basicamente eu quero acompanhar a média móvel de um fluxo em curso de um fluxo de números de ponto flutuante usando os mais recentes números de 1000 como uma amostra de dados. Observe que o abaixo atualiza o total como elementos como addedreplaced, evitando costal O (N) traversal para calcular a soma - necessária para a média - on demand. Total é feito um parâmetro diferente de T para suporte, e. Usando um longo longo quando totalizando 1000 s longos, um int para char s, ou um dobro ao total float s. Este é um pouco falho em que numsamples poderia ir passado INTMAX - se você se importa que você poderia usar um unsigned longa. Ou usar um membro de dados bool extra para gravar quando o recipiente é preenchido pela primeira vez enquanto ciclismo numsamples ao redor da matriz (melhor então renomeado algo inócuo como pos). Respondida em 12 de junho de 12 às 5:19, assume-se que o operador de quotvoid (amostra T) é realmente operador quotvoid (T amostra) quot. Ndash oPless Jun 8 14 at 11:52 oPless ahhh. Bem manchado. Na verdade, eu quis dizer para ser vazio operador () (T amostra), mas é claro que você poderia usar qualquer nota que você gostava. Will fix, obrigado. Ndash Tony D 8 Jun 14 às 14:27

No comments:

Post a Comment